Counterfactual Learning-to-Rank for Additive Metrics and Deep Models
نویسندگان
چکیده
Implicit feedback (e.g., clicks, dwell times) is an attractive source of training data for Learning-to-Rank, but it inevitably suffers from biases such as position bias. It was recently shown how counterfactual inference techniques can provide a rigorous approach for handling these biases, but existing methods are restricted to the special case of optimizing average rank for linear ranking functions. In this work, we generalize the counterfactual learning-to-rank approach to a broad class of additive rank metrics – like Discounted Cumulative Gain (DCG) and Precision@k – as well as non-linear deep network models. Focusing on DCG, this conceptual generalization gives rise to two new learning methods that both directly optimize an unbiased estimate of DCG despite the bias in the implicit feedback data. The first, SVM PropDCG, generalizes the Propensity Ranking SVM (SVM PropRank), and we show how the resulting optimization problem can be addressed via the Convex Concave Procedure (CCP). The second, Deep PropDCG, further generalizes the counterfactual learning-to-rank approach to deep networks as non-linear ranking functions. In addition to the theoretical support, we empirically find that SVM PropDCG significantly outperforms SVM PropRank in terms of DCG, and that it is robust to varying severity of presentation bias, noise, and propensity-model misspecification. Moreover, the ability to train non-linear ranking functions via Deep PropDCG further improves DCG.
منابع مشابه
Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملHashing as Tie-Aware Learning to Rank
We formulate the problem of supervised hashing, or learning binary embeddings of data, as a learning to rank problem. Specifically, we optimize two common rankingbased evaluation metrics, Average Precision (AP) and Normalized Discounted Cumulative Gain (NDCG). Observing that ranking with the discrete Hamming distance naturally results in ties, we propose to use tie-aware versions of ranking met...
متن کاملDeep Kalman Filters
Kalman Filters are some of the most influential models of time-varying phenomena. They admit an intuitive probabilistic interpretation, have a simple functional form, and enjoy widespread adoption in a variety of disciplines. Motivated by recent variational methods for learning deep generative models, we introduce a unified algorithm to efficiently learn a broad spectrum of Kalman filters. Of p...
متن کاملGoogle Scholar journal metrics: Comparison with impact factor and SCImago journal rank indicator for nuclear medicine journals
Introduction: In the current study, we compared h5-index provided by Google Scholar (GS), impact factor (IF) provided by web of sciences (WOS), and SCImago journal rank indicator (SJR) provided by SCOPUS for quality assessment of nuclear medicine journals. Methods: 2013 h5-index, 2012 IF, and 2011 SJR of nuclear medicine journals were extracted from their publishers namely GS, WOS, and SCOPUS....
متن کامل